14 0 90 62 0 3 43 Week 1 5 89 0 90 61 1 3 22 Week 2 5 69 0 89 60

14 0.90 62.0 3.43 Week 1 5.89 0.90 61.1 3.22 Week 2 5.69 0.89 60.9 3.08 Week 3 5.42 0.87 59.0 2.79 Week 4 5.61 0.88 60.9 3.01 Conclusion In conclusion, we have found that modification of the interface between the inorganic ITO and photoactive layer can improve the performance of inverted solar cells. The modification of ITO leads to 8% improvement over unmodified ITO inverted devices. This interface modification serves multiple functions that affect the photoinduced charge transfer at the interface, which include the reduction the recombination

of charges, passivation of inorganic surface trap states, and improvement of the exciton dissociation efficiency at the polymer/ZnO interface. Moreover, https://www.selleckchem.com/products/Cediranib.html the stability of these modified

devices is slightly better compared with unmodified ones. Acknowledgements This work was supported by the Industrial Strategic Technology Development (10045269, Development of Soluble TFT and Pixel Formation Materials/Process Technologies for AMOLED TV) funded by MOTIE/KEIT. Electronic supplementary material Additional file 1: Figure S1: AFM images of ZnO and ZnO:Cs2CO3 layers with different blend ratios. (JPEG 135 KB) Additional file 2: Figure S2: J-V characteristics evolutions of P3HT:PCBM- and P3HT:ICBA-based devices (a) ZnO and PEDOT:PSS-Device A, (b) ZnO:Cs2CO3 and PEDOT:PSS-Device B, (c) ZnO and PEDOT:PSS-Device C, and (d) ZnO:Cs2CO3 and PEDOT:PSS-Device D. (JPEG 63 KB) References 1. Bottiger APL, Jorgensen M, Menzal A, Krebs FC, Andreasen JW: High-throughput HM781-36B cost roll-to-roll X-ray characterization

of polymer solar cell active layers. J Mater Chem 2012, 22:22501–22509. 10.1039/c2jm34596jCrossRef 2. Sondergaard R, Hosel M, Angmo D, Olsen TTL, Krebs FC: Roll-to-roll fabrication of polymer solar Carbohydrate cells. Materials today 2012, 15:36–19. 10.1016/S1369-7021(12)70019-6CrossRef 3. Espinosa N, Dam HF, Tanenbaum DM, Andreasen JW, Jorgensen M, Krebs FC: Roll-to-roll processing of inverted polymer solar cells using hydrated vanadium(V)oxide as a PEDOT:PSS replacement. Materials 2011, 4:169–182. 10.3390/ma4010169CrossRef 4. Krebs FC, Gevorgyan SA, Alstrup J: A roll-to-roll process to flexible polymer solar cells : model studies, manufacture and operational stability studies. J Mater Chem 2009, 19:5442–5452. 10.1039/b823001cCrossRef 5. Susanna G, Salamandra L, Brown TM, Carlo AD, Brunetti F, Reale A: Airbrush spray-coating of polymer bulk-heterojunction solar cells. Sol Energ Mater Sol Cell 2011, 95:1775–1778. 10.1016/j.solmat.2011.01.047CrossRef 6. Patel D, Deshmukh SP: Polymer in sustainable energy. J Minerals Mater Charac Eng 2012, 11:661–666. 7. Alemu D, Wei HY, Ho KC, Chu CW: Highly conductive PEDOT:PSS electrode by simple film treatment with methanol for ITO-free polymer solar cells. Energ Environ Sci 2012, 5:9662–9671. 10.1039/c2ee22595fCrossRef 8.

Comments are closed.