NTPDases vary in their efficiency of tri- and diphosphate hydrolysis; therefore, which family members are expressed impacts nucleotide availability and half-life. This study employed enzyme activity histochemistry to examine the distribution of ATPase activity and immunohistochemistry for NTPDase1, 2, 3, and 8 in dorsal root ganglion (DRG) and spinal cord. Nucleotidase activity was robust in spinal dorsal horn, confirming that nociceptive pathways are a major site of nucleotide transmission. In DRG, extensive staining revealed ATPase activity in a subset of neurons GSK126 and in non-neuronal cells. mRNA for NTPDase1-3, but not NTPDase8, was detected in lumbar DRG and spinal cord. Immunoreactivity
for NTPDase3 closely matched the distribution of ATPase activity, labeling DRG central projections in the dorsal root and superficial dorsal horn, as well as intrinsic spinal neurons concentrated in lamina II. In DRG, NTPDase3 co-localized with markers of nociceptors and with NT5E. In addition,
labeling of a subset of larger-diameter neurons in DRG was consistent with intense staining of Meissner corpuscle afferents in glabrous skin. Merkel cells and terminal Schwann cells of hair follicle afferents were also labeled, but the axons themselves were negative. We propose that NTPDase3 is a key regulator of nociceptive signaling that also makes an unexpected contribution to innocuous
tactile sensation. 2011 IBRO. Published by Elsevier Ltd. All rights Dinaciclib solubility dmso reserved.”
“Podocyte injury has been suggested to have a pivotal role in the pathogenesis of diabetic glomerulopathy. To glean insights into molecular mechanisms underlying diabetic podocyte injury, we DNA Damage inhibitor generated temporal global gene transcript profiles of podocytes exposed to high glucose for a time interval of 1 or 2 weeks using microarrays. A number of genes were altered at both 1 and 2 weeks of glucose exposure compared with controls grown under normal glucose. These included extracellular matrix modulators, cell cycle regulators, extracellular transduction signals and membrane transport proteins. Novel genes that were altered at both 1 and 2 weeks of high-glucose exposure included neutrophil gelatinase-associated lipocalin (LCN2 or NGAL, decreased by 3.2-fold at 1 week and by 7.2-fold at 2 weeks), endothelial lipase (EL, increased by 3.6-fold at 1 week and 3.9-fold at 2 week) and UDP-glucuronosyltransferase 8 (UGT8, increased by 3.9-fold at 1 week and 5.0-fold at 2 weeks). To further validate these results, we used real-time PCR from independent podocyte cultures, immunohistochemistry in renal biopsies and immunoblotting on urine specimens from diabetic patients. A more detailed time course revealed changes in LCN2 and EL mRNA levels as early as 6 hours and in UGT8 mRNA level at 12 hours post high-glucose exposure.