Findings: Follicular fluid and serum were collected at the time of follicular aspiration in in vitro fertilisation without (Natural cycle IVF, n = 24) and with (conventional gonadotropin stimulated IVF, n = 31) gonadotropin stimulation.
The concentration of the extra-ovarian hormones prolactin and cortisol were analysed by immunoassays.
Results: Median serum prolactin and cortisol concentrations were 12.3 ng/mL and 399 nmol/L without versus 32.2 ng/mL and 623 nmol/L with gonadotropin stimulation. The corresponding concentrations in follicular fluid were 20.6 ng/mL and 445 nmol/L versus 28.8 ng/ml and 456 nmol/L for prolactin and cortisol. As a consequence, mean follicular fluid: serum ratios were significantly reduced under gonadotropin RepSox chemical structure stimulation (prolactin p = 0.0138, cortisol p = 0.0001). As an enhanced blood-follicular permeability and transportation, induced by gonadotropin stimulation, would result in increased instead of decreased follicular fluid: serum ratios as found in this study, it can be assumed that this does not affect extra-ovarian protein and steroid hormones as illustrated by prolactin and cortisol.
Conclusions: The model of serum follicular fluid: serum ratio of hormones, produced outside the ovaries, did Copanlisib concentration not reveal
a gonadotropin induced increased blood-follicular transportation click here capacity. Therefore it can be assumed that the effect of gonadotropins on follicular endocrine function is not due to an increased ovarian permeability of extra-ovarian hormones.”
“Background: Oocyte-specific genes play critical
roles in oogenesis, folliculogenesis and early embryonic development. The objectives of this study were to characterize the expression of a novel oocyte-specific gene encoding an F-box protein during ovarian development in rainbow trout, and identify its potential interacting partners in rainbow trout oocytes.
Methods: Through analysis of expressed sequence tags (ESTs) from a rainbow trout oocyte cDNA library, a novel transcript represented by ESTs only from the oocyte library was identified. The complete cDNA sequence for the novel gene (named fbxoo) was obtained by assembling sequences from an EST clone and a 5′RACE product. The expression and localization of fbxoo mRNA and protein in ovaries of different developmental stages were analyzed by quantitative real time PCR, immunoblotting, in situ hybridization and immunohistochemistry. Identification of Fbxoo binding proteins was performed by yeast two-hybrid screening.
Results: fbxoo mRNA is specifically expressed in mature oocytes as revealed by tissue distribution analysis. The fbxoo cDNA sequence is 1,996 bp in length containing an open reading frame, which encodes a predicted protein of 514 amino acids.