Entries with black square represents generic names and accession numbers (in parentheses) from public databases. Entries from this work are represented as: clone number, generic name and accession number (in parentheses). The most abundant phylotypes
were closest Selonsertib chemical structure matches to gammaproteobacteria, constituting 65% of the clones. Distinct genera were Enterobacter aerogenes, Ignatzschineria larvae sp., uncultured Enterobacter sp., Serratia sp., uncultured Serratia sp., S. marcescens, S. nematodiphila and Thorsellia anopheles. Gram-positive firmicutes contributed 14% of distinct phylotypes from groups of Staphylococcus cohnii, Streptococcus suis, uncultured B. thermoamylovorans and uncultured Lactobacillus sp. The inability to detect Bacillus sp. in clone libraries despite their presence on plates was observed among larvae samples. 11% of the clones were found to belong to betaproteobacteria, mainly Azoarcus sp., Leptothrix selleck chemical sp. and uncultured
Hydroxenophaga sp. Deinococcus xinjiangensis was identified as single clone OTUs among 6% of the clones. Cyanobacteria, Actinobacteria, CFB group and uncultured class of clones represented 1% of the single clone OTUs as Calothrix sp., Brevibacterium paucivorans, uncultured Dysqonomona sp. and uncultured bacterium (Figure 1). The degree of similarity of clone sequences and the 16S rRNA gene sequence of its closest match in the database were in the range of 85–98%. It was very interesting to observe that the individual libraries harbored many sequence types unique to that library and sample, so the even single data set provides a better estimate of the total Selleckchem PHA-848125 diversity in all the samples. Among the lab-reared and field-caught
mosquito midgut bacteria Chryseobacterium, Pseudomonas and Serratia sp. were found to be overlapping in adult female and larval mosquitoes, whereas no genera were found to be overlapping in adult male A. stephensi. Uncultured groups and “”Novel”" lineages Results of Jukes-Cantor evolutionary distance matrix suggested that the vast majority of the sequences were different strains of known and unknown species and may represent new species within the genus of different phylum. Many 16S rRNA gene sequences from Selleckchem Rapamycin field-collected male A. stephensi (M1, M6, M10, M16) (Figure 2) and many clusters of different phylotypes in female A. stephensi, such as F31, F33, F34, F36, F37 (Figure 4) were very distinct from those of cultured organisms present in the NCBI database. Larval A. stephensi sequences (L12, L15, L18, L19, L20, L24, L29 and L39, Figure. 6) were also found to be deep branching in tree with low bootstrap values, which suggests a high genetic diversity. These did not appear to fall within defined groups and subgroups and may represent “”novel”" species. Many of such novel isolates have been reported earlier by 16S rRNA gene-based identification of midgut bacteria from field-caught A. gambiae and A.