Based on these plots, precursor frequencies were calculated. Figure 2b shows that although the precursor frequency (pf) of CD4+ T cells showed a trend to increase both after donor-specific (dsp) and third-party stimulation, the difference between rejector and non-rejector was not significant. However, the dsp CD8pf
of the rejectors was significantly higher than that of the non-rejectors (P = 0·02), whereas no difference between rejector and non-rejector was observed after third-party stimulation. There was no relationship between the donor-specific CD8+ precursor frequency and the time interval between transplantation and acute rejection, nor with the severity of rejection. CD4pf and CD8pf are dependent on the number R788 order of mismatches in HLA-DR and HLA-A/B, respectively. We found a trend towards a higher CD8pf in rejectors compared to non-rejectors with the same number of mismatches for HLA-A/B or HLA-DR (Fig. 2c). Data from the literature show that the IFN-γ ELISPOT assay can predict cellular alloreactivity pre- and post-transplantation. We applied the IFN-γ Metformin order ELISPOT assay to rejecting and non-rejecting patients from whom PBMC were still available and from whom the dsp CD8pf and CD4pf was already analysed using the MCL–CFSE assay. Indeed, the number
of donor-specific IFN-γ-producing cells as detected by ELISPOT was significantly higher in the rejector than in the non-rejector groups (Fig. 3a). Moreover, we found that the number of IFN-γ spots did not correlate with the dsp CD4pf, but correlated significantly with the dsp CD8pf (Fig. 3b,c). We could not establish a relationship between number of IFN-γ spots and the number of mismatches, although this could be due to the small number of patients. The expression of common-γ cytokine receptors can be influenced by the differentiation status of T cells. We measured the Florfenicol expression of IL-2Rα on unstimulated and alloreactive CD4+ and CD8+ T cells. Before stimulation a low percentage of cells expressed the IL-2Rα chain; after allostimulation nearly all responsive cells expressed this receptor but there was no difference between rejectors and non-rejectors (data not shown). We also measured the expression
of IL-15Rα on unstimulated and alloreactive T cells. The frequency of IL-15Rα expressing cells on unstimulated cells was low, and did not increase after donor-specific or third-party stimulation either in the CD4+ or in the CD8+ T cell subset (data not shown). Before stimulation most CD4+ and CD8+ T cells expressed IL-7Rα, but after 6 days’ MLC CD8+ T cells had a higher percentage of IL-7Rα- cells within the alloreactive pool than did CD4+ T cells (Fig. 4a). Importantly, rejectors had a higher percentage of alloreactive CD8+ T cells that lack IL-7Rα expression than the non-rejectors. This was the case for both donor-specific (P = 0·01) and third-party stimulation (P = 0·04) (Fig. 4b), suggesting that this is an intrinsic property of the recipient T cells.