Stream sediment samples
were taken from slack water deposits from areas within the main thalweg of the channel. Thirty-five floodplain surface sediment samples (0–2 cm), seven shallow pits (0–2, 2–10, 10–20 cm) and three deeper pits were collected (0–2, 2–10, 10–20, 20–30, 30–40, 40–50 cm), giving a total of 101 samples. Floodplain samples were taken perpendicular to the channel at distances of approximately 50 m, 100 m and 150 m extending out from the top of the channel bank at every second sampling interval (LA1, LA3, etc.). Sampling was extended beyond 150 m if field evidence suggested wider overbank flooding. One (1) floodplain sample was taken approximately 50 m from the top of the channel bank on every alternate interval (LA2, LA4, etc., Fig. 2). Only one side of the floodplain was sampled due to time and access constraints. buy BGB324 Four control/background samples were collected from the Dingo and Bustard creeks that drain from buy Rigosertib land
unaffected by the LACM or any related activities (Fig. 2). One channel and one floodplain sample (taken 50 m from the channel) were taken at each tributary at a depth of 0–2 cm. A total of 19 deeper pit samples (10–20; 20–30; 30–40 and 40–50 cm) were also collected from below the floodplain surface throughout the principle study area to provide additional (proxy) information on background sediment-metal composition (cf. the approach used in Taylor et al., 2010). Sediment was collected using a plastic trowel that was washed and cleaned with moistened wipes and deionised water between each sample. The shallow pits were dug using a mattock and shovel and the face of the pit was cleaned off with the trowel prior to sampling to minimise residual effects from the digging tools. Samples were taken from the deepest interval moving upwards to minimise accidental contamination from higher sediments during sampling. Samples were collected from each interval (i.e. Avelestat (AZD9668) 10–20 cm), labelled, double bagged and stored in a cool, dry place prior to analysis. Samples were initially oven dried at
40 ± 3 °C for 48 h to remove moisture and then passed through a 2 mm stainless steel sieve to remove stones, debris or large organics, in accordance with NEPC (NEPC, 1999a and NEPC, 1999b) and Australia Standards AS 4479.1-1997 and AS 4874-2000. Sieves were cleaned with compressed air, submerged in an ultrasonic bath of Type II deionised water for 5 min, rinsed several times with Type II deionised water and oven dried for 15 min at 80 °C before reuse. A representative sample was obtained from the <2 mm sieved sample using the Linear Japan Cake Method (Buhrke et al., 1998), which was then milled to <150 μm. Following standard Australian practice, samples were sieved to <2 mm for measurement of total extractable metal and metalloid concentrations.